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Let S be the square in R2 with 0 ≤ x, y ≤ π. We wish to find explicit formulas for harmonic functions in S
when we only know boundary values. We’ll only consider a special case—when the function vanishes (that is,
equals zero) on three sides of the square. To be explicit, we want to solve this problem:

Solve ∆u = 0 inside S with the constraint that u(π, y) = f(y) for 0 < y < π and u = 0 on the other
three sides of S.

If we wanted to find harmonic functions with more general boundary behavior, we’d only have to add together
functions of the above type. That’s why our problem is sufficient to consider.

Let’s test for solutions. Suppose that u(x, y) = F (x)G(y) for some single-variable functions F,G. Feeding
this into Laplace’s equation gives (after rearranging)

−F
′′(x)
F (x)

=
G′′(y)
G(y)

.

Each side of this equation is a function of a different variable; thus each side must be constant. For now, let’s
call the constant k. This gives two ODEs.

F ′′(x) + kF (x) = 0
G′′(y)− kG(y) = 0

We have to examine some cases now. If k = 0, both F and G are linear functions. In particular, if u matches
those zero boundary conditions, then F,G ≡ 0. This case is uninteresting, so we exclude k = 0.

Suppose k > 0. Then G is a sum of exponentials, and matching the zero boundary conditions requires G ≡ 0.
This case is also uninteresting, so we exclude k > 0. We must have k < 0, so let’s write k = −a2 for some real
number a (which might as well be positive, it makes no difference).

Solving the ODEs gives

F (x) = A cosh(ax) +B sinh(ax)
G(y) = C cos(ay) +D sin(ay)

Since u(0, y) = 0, we must have F (0) = 0. This gives A = 0. Since u(x, 0) = 0, G(0) = 0. Thus C = 0. Finally,
since u(x, π) = 0, we must have G(π) = 0. Therefore sin(aπ) = 0; that is, a must be a positive integer.

Altogether, we have found that if u is harmonic, satisfies the three zero boundary conditions, and is of the
form F (x)G(y), then it must have the form

un(x, y) = Ln sinh(nx) sin(ny),

where Ln is a constant. Note that we have changed a into n, to better reflect that it is an integer.
To find a solution which matches the given fourth boundary condition, u(π, y) = f(y), we take infinite sums

of the functions un.

u(x, y) =
∞∑
n=1

Ln sinh(nx) sin(ny).

We pick the constants Ln to match the boundary data. Plugging in x = π gives

f(y) = u(π, y) =
∞∑
n=1

Ln sinh(nπ) sin(ny).

The function f was only defined on 0 < y < π; if we extend (that is, pretend) the function to be an odd function
on −π < y < π, then the above equation is the Fourier series of f ! To pick the constants Ln, just define

Ln =
bn

sinh(nπ)
=

2
π sinh(nπ)

∫ π

0

f(y) sin(ny) dy.


